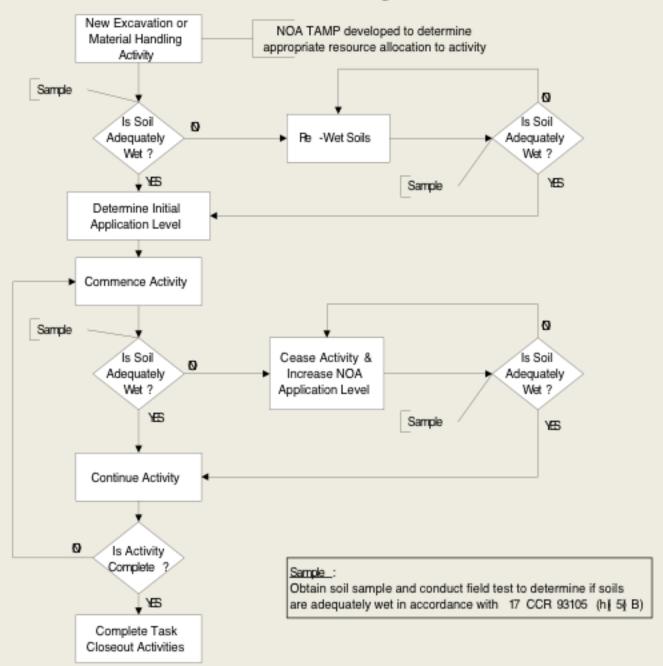
AEG Special Joint Meeting/Symposium

"Assessment, Monitoring and Mitigation of Naturally Occurring Asbestos (NOA) Hazards in the Western U.S."

Outdoor Air Scrubbing

BACK TO BASICS

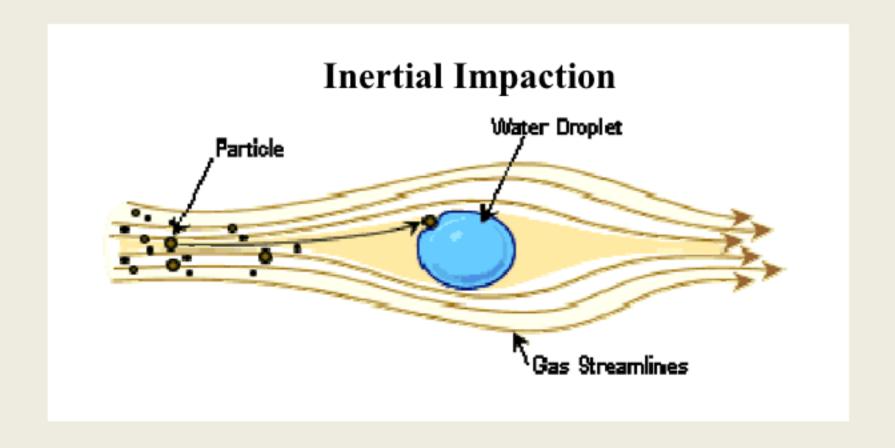
FUNDAMENTAL SCIENCE APPLIED TO NOA MITIGATION


James A. Ippolito, Carole J. Kawamoto & Jeffery P. Bauman KUMA Corporation, Grass Valley, California, USA

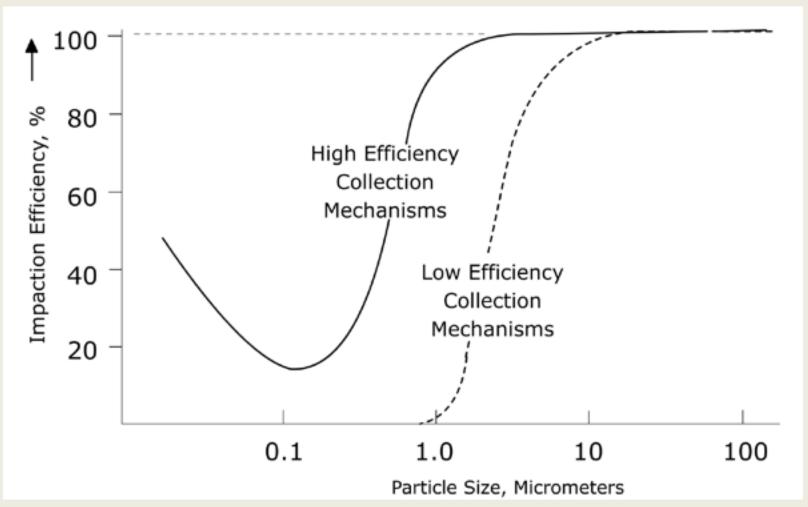
KUMA'S STRATEGY FOR NOA CONTROL

NOA TAMP (Task Analysis & Mitigation Plan)

- Identify Particulate Source Areas
- Identify Particulate Control Methods
- ü area mist
- ü point source mist
- ü soil glues
- ü adequately wet soil
- ü consolidation of soil
- Mitigate all sources


NOA CONTROL USING ADEQUATELY WET TESTING

PARTICULATE COLLECTION


- Inertial Impaction
- Collection Efficiency
- Dust (NOA) Collection Process
- Water Particle Distribution
- Comparison of Typical Dust Control Methods to KUMA's Methods

PARTICULATE COLLECTION

COLLECTION EFFICIENCY

General relationship between particle size and collection efficiency

Source: EPA-APTI: 413 Control of Particulate Matter Emissions, 5th Edition, Chapter 4

DUST (NOA) COLLECTION PROCESS

- 5 micron long asbestos fiber floating in the air
- Water condensation: NOA fiber too small for effective collisions
- Will Nucleated condensation of water molecules and small water particles impaction
 - More condensation: still too small for effective collisions
 - 5 micron size water droplet with NOA fiber nuclei
 - More condensation: still too small for effective collisions

100 micron

- 10 micron, cloud-sized droplet
- Effective collisions and more condensation

Settling V = 0.7 m/s

1000 micron Settling V = 3.9 m/s

WATER PARTICLE DISTRIBUTION – KUMA SYSTEMS

Particle Data Before Coalescence

	D10	D20	D32	D50	D90
Particle Aerodynamic Diameter (µm):	0.000278	10	38	50	60
Percent of water volume:	10%	10%	12%	18%	40%
Volume (gallons) of water per minute:	8.8	8.8	10.56	15.84	35.2
Weight (grams) of water per minute:	333.08	333.08	399.696	599.544	1332.32
Weight (grams) of particle:		5.24E-10	2.87E-08	6.54E-08	1.13E-07
Number of Particles:	1.15E+25	6.36E+11	1.39E+10	9.16E+09	1.18E+10

After Condensation, Coalescence and Evaporation

Particle Aerodynamic Diameter (µm):	0.000278	10	1000	3000
Percent of water volume:	60%	10%	10%	20%
Volume (gallons) of water per minute:	52.8	8.8	8.8	17.6
Weight(grams) of water per minute:	199,848	33,308	33,308	66,616
Weight (grams) of particle:	RH	5.24E-10	5.24E-04	1.41E-02
Number of Particles:	6.88E+27	6.36E+13	6.36E+07	4.71E+06

Assumptions

Wind Speed (mph): 5

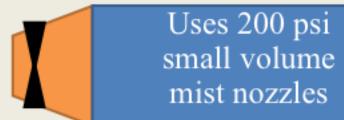
Initial Relative Humidity: 19%

Final Relative Humidity: 100%

Temp (degrees F): 90

Work Area: 50' wide x 15' high x 440' long

Air Treated: 330,000 cubic ft/min


Water Flow Rate: 88 gallons per minute

(30% remains onsite 70% migrates off site)

COMPARISON OF TYPICAL WATER SPRAY METHODS

Fire Hose (velocity >10 mph) 10,000 micron drops

100 psi

Spray Fan (velocity >100 mph) ~40 micron drops Water and air at the same velocity

KUMA Mist Gun (velocity >400 mph) Very small (32% under 40 micron drops) Uses high volume spray nozzle

2,000 psi

KUMA VIDEO

Question & Answers